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ABSTRACT n 9
Binary dissection is widely used to partition non-uniform domains over parallel comput-

ers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the
regions being generated and can yield decompositions that have poor communication to
computation ratio.

Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen
to minimize load + Ax(shape). In a 2 (or 3) dimensional problem, load is the amount
of computation to be performed in a subregion and shape could refer to the perimeter
(respectively surface) of that subregion. Shape is a measure of communication overhead and
the parameter A permits us to trade off load imbalance against communication overhead.
When A is zero, the algorithm reduces to plain binary dissection.

This algorithm can be used to partition graphs embedded in 2 or 3-d. Here load is the
number of nodes in a subregion, shape the number of edges that leave that subregion., and A
the ratio of time to communicate over an edge to the time to compute at a node. We present
an algorithm that finds the depth d parametric dissection of an embedded graph with i
vertices and e edges in O(max[n log n, d]) time, which is an improvement over thie O(dn log n)
time of plain binary dissection. We also present parallel versions of this algorithm; the best of
these requires O((n/p) log3 p) time on a p processor hypercube, assuming graphs of bounded
degree.

We describe how PBD is applied to 3-d unstructured meshes and yields partitions that
are better than those obtained by plain dissection. We also discuss its application to the color
inmag. quantization problem, in which samples in a high-resolution color space are mapped
onto a lower resolution space in a way that minimizes the color error.
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1 Introduction

The partitioning of problems over the processors of a parallel computer sys-
tem remains the subject of considerable research. This problem is particu-
larly difficult when the domain or region being partitioned has nonuniform
computational requirements. For example, in a climate model, some areas
of the earth's surface may require greater computational effort than others.
We would like to apportion parts of the problem domain over the processors
of the system in such a way as to put equal computational load on all pro-
cessors, so as to minimize the total computational time. Another example is
the solution of aerodynamic problems using 'unstructured' meshes which are
graphs embedded in 2 nr 3-dimensional space1 . Such meshes are increasingly
being used to investigate the aerodynamic properties of aircraft.

Problems of this type require huge amounts of computational power and
are at the limits of the memory capacities of the largest parallel processors.
There is a pressing need for techniques to improve the running time of such
problems, because they require scarce and expensive resources for their so-
lution and also because the solution itself has great economic value. The
solution to a weather calculation obviously decreases in value the longer it
takes to compute. For the case of physical calculations based on unstructured
meshes, a fast solution technique permits the designer to evaluate a larger
number of alternatives within the course of a single session.

The binary dissection or orthogonal recursive partition algorithm was
developed by Berger & Bokhari in 1985 [3, 4] as a means for partitioning
non-uniform domains. It was inspired by Bentley's work on k-dimensional
search trees [2]. This approach permits a very fast solution to the parti-
tioning problem and has found many applications [1, 9, 17]. The key idea
behind this algorithm is to make a series of bisections, along orthogonal di-
rections, minimizing the load imbalance at each step. This algorithm does
not take into consideration the perimeter, surface area, or aspect ratio of
the subregions being generated and can yield decompositions that have poor
communication to computation ratio.

In the present paper we present a new parametric binary dissection (PBD)
algorithm in which each recursive cut is chosen to minimize load + \ x (shape).

IAs opposed to structured meshes which are basically cartesian grids, possibly with
nonuniform spacing.
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When the domain is made up of a 2-dimensional region, shape could refer
to the perimeter of a subregion. In the 3-d case it could refer to the surface
area. When this approach is applied to the problem of partitioning embed-
ded graphs, load refers to the number of vertices in a region and shape the
number of edges leaving a region. In general, shape is a measure of the
communication overhead and the parameter A permits us to trade off load
imbalance against communication overhead. We can sacrifice some amount
of load balance for better shape balance in order to obtain faster overall com-
putation time. When A is zero, the new algorithm reduces to simple binary
dissection.

This algorithm finds applications to partitioning problems in fields other
than parallel processing. One example is color image quantization, in which
samples in a high-resolution color space are mapped onto a lower resolution
space in a way that minimizes the color error. In our formulation of this
problem, one is given a 3-dimensional Boolean grid in which some points are
occupied and others are vacant. The objective is to partition this grid into
regions such that (1) the total number of regions is bounded by some given
maximum, and (2) the maximum distance between any two points within a
region is minimized.

Mesh partitioning is one of the problems to which we apply our algo-
rithm. A number of other partitioning algorithms have been proposed for
this problem, and it is worthwhile to compare and contrast our approach
with existing work. The previous work [12, 15, 21] is built around the notion
of graph separators. In such a formulation a mesh is viewed as an undirected
graph. An edge-separator is a set of edges that disconnects the graph into
two nearly equal sized pieces. The goal of separator based approaches is to
find separators of small size, thereby reducing the communication overhead.
There are two principal differences between parametric binary dissection, and
separator-based algorithms. PBD constrains all cuts to be straight lines, a
constraint not imposed on the other methods. As a consequence, for certain
problems and ranges of parameter values, the partitions produced by PBD
on this application are almost certainly inferior. This deficiency is balanced
by the fact that

"* PBD is more general in its application (e.g., we see no easy way to use
graph separators for the color image quantization problem),

"* linear cut constraints arise naturally in a number of applications, and
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e PBD is undoubtably the simplest, and likely fastest method among the
alternatives.

Thus the quality of partitions produced by PBD on the specific problem of
mesh partitioning is not the sole measure of its value.

In Section 2 we review the original binary dissection algorithm. The basic
ideas underlying parametric binary dissection are discussed in Section 3. In
Section 4 we present a fast algorithm for parametric binary dissection. This
algorithm can also be used for ordinary binary dissection and is faster than
the previously known algorithm. A simple parallel algorithm for parametric
binary dissection is presented in Section 5. A more elaborate, and faster,
parallel algorithm appears in Section 6. Sections 7 and 8 describe applica-
tions of parametric binary dissection to unstructured meshes and to image
quantization, respectively. We present our conclusions in Section 9.

2 Binary Dissection

The original binary dissection algorithm proposed by Berger & Bokhari [3, 4]
can be applied to a variety of situations. In the present paper we are con-
cerned with the partitioning of 2, 3 (or possibly higher) dimensional domains
containing n points specified by their x, y, z, ... coordinates. These points
can be bisected along the x direction by first sorting by the x coordinate and
then finding the mid-point. This process is accomplished in O(n log n) time
for the sorting and O(n) time for splitting the list of points. The bisection
process is then repeated along the y direction for the two subdomains and
so on.

If the depth of partitioning (the number of times the bisection is carried
out) is given by d, then the entire process takes time

d-1

o(E(2'(n/2'log n/2') + n)) = O(dn log n). (1)
i=O

Since the depth of partitioning d < log n, this results in O(n log 2 n) in
the case of problems where the partitioning is carried out to large depths.
However, in many problems of interest the depth of partition d is small
compared to log n and it is more meaningful to use expression (1).
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The basic bisection step described above can also be carried out using a
fast (O(n)) median finding algorithm[5, 6]. The sorting step iF eliminated
and we are left with 0(dn) time. However the constants involved in the
linear time median finding algorithm are large and this method remains of
theoretical interest only.

Although binary dissection has found many applications, for example
[1, 9, 17], it partitions only on the basis of numbers of points. It is insensitive
to the distribution of points in space. As a result, in its attempt to equalize
the number of points at each bisection, it can yield partitions which have
poor aspect ratio (the ratio of largest to smallest sides). This phenomenon
may be undesirable in specific applications.

When binary dissection is applied to the partitioning of graphs embedded
in 2 or 3 dimensional space, as is the case in many important aerodynamic
problems, the edge information (which determines the amount of information
that needs to be communicated between points) is ignored. Thus while binary
dissection can be (and has been) applied to such problems, the partitions
obtained can sometimes be poor as far as the compute/communicate ratio is
concerned.

3 Parametric Dissection

Parametric binary dissection remedies one of the shortcomings of the basic
algorithm by explicitly taking the shapes of regions into account. Thus, if the
problem is to partition a three dimensional region that contains a number
of points, we minimize at each bisection step load + Ax (shape) for the two
subregions.

By load we mean the number of points in each region-this is the quantity
that plain binary dissection minimizes. Shape can refer to a variety of prop-
erties of regions. For example, if the problem is to partition a 2-dimensional
region into subregions such that the resulting subregions are as square as
possible, we may wish to use the perimeters of the resulting rectangles as our
shape property. At each bisection step we would minimize the the number of
points in each rectangle plus A times their perimeters. The parameter A per-
mits us to trade off load imbalance against shape imbalance-by sacrificing
some amount of load balance, we can improve the shape imbalance.

The preceding example can be extended in an obvious fashion to 3 or
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higher dimensions. Various shape properties can be used. For example, in
Section 8, we partition three dimensional space and the shape property is
the length of the diagonal. In the following discussion we shall assume that
the shape property can be computed easily, so that the analysis of time
complexity of the algorithm is not affected by it. Nothing keeps us from
using a complicated shape property, as long as we are willing to pay for the
time required to compute it while carrying out binary dissection. For the
problem of Section 8 we could choose to use the distance between the two
most distant points in any region as our shape property, which is relatively
more expensive to compute.

The discussion so far has been in terms of point problems, where we are
given a collection of points in 2, 3 or higher dimensional space. A more
complicated situation arises when we are given a graph embedded in 2, 3 or
possibly higher dimensions. Here each point or node has associated with it
a set of coordinates as well as an adjacency list. The objective here is more
straightforward: each bisection is carried out to minimize nodes + Ax(edges
cut).

Graph partitioning problems arise in many environments, most notably
in the analysis of unstructured meshes (Section 7). When such meshes are
partitioned and mapped onto parallel computers, the running time is modeled
by

max [nodes in region + A x (edges leaving region)]. (2)all regions

Here A corresponds to the well-known communicate to compute ratio for the
given parallel computer system, that is, the ratio of time required to fetch a
datum from a remote processor to the time to compute on a datum on the
local processor. The time given by (2) is normalized to the time required to
compute on one point, assuming a uniform computation cost for each point.
A more refined expression for the parallel computation time for partitioned
graphs is

max [nodes in region + te(edges in region) + A x (edges leaving region)].all regions

(3)
In this case r is the time to fetch information from a neighboring point in
the grid if that point lies on the same processor and A is is the time to fetch
this information if the point lies on a remote processor. Both quantities are
normalized in terms of time required to compute on a point.
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For the case of point problems complexity of parametric binary dissection
is unchanged at O(dn log n), where d is the depth of partitioning2 . For graph
problems, the complexity is O(max[dn log n, de]), since we have to look at
all edges before splitting, at every depth of the partition.

4 Fast Parametric Dissection

A major factor contributing to the time complexity of the binary dissection
algorithms presented in Sections 2 and 3 is repeated sorting at each level of
partitioning. We now show how parametric binary dissection can be accom-
plished by sorting only once per dimension. The fast algorithm we present
also improves the time required for plain binary dissection.

Our fast algorithm obtains its efficiency by sorting only once per dimen-
sion. A separate index list is created for each dimension. When a regio" s
partitioned, all indices are split, so that the sublists corresponding to each
subregion remain sorted. For purposes of exposition, we assume a 3-d graph
partitioning problem and partition on the basis of expression (2) of Section 3.
A simple modification to the procedure given below permits us to partition
on the basis of expression (3) of Section 3. This modification does not affect
the complexity of the solution.

Let us suppose that the the index lists for the x, y and z dimensions are
stored in arrays xlistD,ylistD and zlistfl. The subregion to be partitioned is
stored in array positions L... U. This means that the x dimension index list
extends from xlist[L] to xlist[U] and so on. The current depth of partitioning
is depth. The coordinates of point i are stored in x[i], y[i], z[i]. The procedure
for computing the parametric cut is as follows.

procedure PARAMETRIC-CUT(depth, L, U,x,yz,xlist,ylist,zlist);

1. Sweep forward from i=L to U counting the edges that would leave the left
hand region, if the left hand region was L to i (inclusive). Store the result
in leftvec[i].

2. Sweep backwards from i=U down to L counting the edges that would leave
the right hand region, if the right hand region was i to U (inclusive). Store
the result in rightvec[i].

2Assuming that the shape property for a region takes negligible time to compute.
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3. Sweep forward again from i=L to U to find the optim-l split point:

"* the left hand region comprises L to i,

"* the right hand region comprises i+1 to U

"* the optimal split point SPLITPLACE is the value of i for which the
objective MAX((i-L+1) + Ax(leftvec[i]), (U-i) + Ax(rightvec[i+l]))
is minimum. The value X[SPLITPLACE] is SPLITVALUE.

4. The xlist has now been split into two parts, L to SPLITPLACE and SPLIT-

PLACE+1 to U. The x coordinates of these points are already sorted since
the original index list was sorted and has not been disturbed.

5. Split the ylist: sweep forward from i=L to U moving successive values of
ylist[i] for which x[ylist[i]] _5SPLITVALUE to the first part of the list (Figure
2 illustrates this for a 2-d problem). The remaining values are moved to
the second part of the list.

6. Similarly split the !list.

7. At this point all three indices xlist, ylist and zlist have been split so that
elements [L..SPLITPLACE] of these lists contain the points in one of the
subregions and [SPLITPLACE+1..U] those in the other. When accessed
through these lists the x, y and z coordinates of the points are in sorted
order.

8. Recursively cut for next depth but along next dimension
if(depth>1) then

PARAMETRICCUT(depth-1, L,SPLITPLACE,y,z,x,ylistzlist,xlist)
PARAMETRIC_-CUT(depth-1,SPLITPLACE+1,U ,y,z,x,ylist,ZliSt,xlist)

endif;

end parametric..cut;

Figure i clarifies how leftvec and rightvec are computed. The vertical
dashed lines in this figure show one possible SPLITPLACE. The value of leftvec
for this SPLITPLACE is 5. This is because if the right hand region was chosen
to be up to and including the node through which this dashed line passes,
the number of edges leaving the left hand region would be 5. Similarly, if the
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Figure 1: Computation of leftvec and rightvec in steps 1 and 2 of procedure
parametric-cut. The domain to be partitioned (along the z-direction) is given by
the top rectangle. The vertical dashed line is discussed in the text.



ylist
8

7

456
3
2

1

0
0 1 2 34 5 8 xlist

7
6

ylist
8

3

2 67

1 5
1

0

-4
0 1 2 3 4 5 8 xlist

7
6

Figure 2: Splitting index lists: suppose we choose to split points in the domain
as indicated by the vertical cut. xlist (thin arrows) is split in constant time. ylist
(thick arrows) is split in time proportional to the number of points, since each
point in this index list may have to be moved.
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right hand region was chosen to start from this point onwards, the number
of edges leaving the right hand region would be 8. Note that the edge lying
wholly between points outside the region has no impact on the computation.
Figure 2 shows how the index lists are split.

Assuming a fixed number of dimensions, the sorts take O(n log n) time.
For point problems, each partition or split takes O(n) time. We therefore
get O(n log n) + O(dn) = O(n log n) for point problems.

For graph problems the sorting time is unchanged. The time to split is
now O(e) per level, as we have to look at every edge at every level. The time
is thus 0(max[n log n, de]) for graph problems. However in this case it is
important to remember that the graphs corresponding to unstructured grids
from 2-d aerodynamic problems are planar and thus have e = 0(n). Typical
3-d aerodynamic grids have bounded degree [7] and again have e = O(n).
Thus we again obtain O(n log n).

5 A Simple Parallel Algorithm

We now discuss a parallel version of the parametric dissection algorithm.
This is a simple algorithm that does not utilize the available processors well:
its runtime is O(n) independent of the number of processors, assuming that
the data points are supplied in sorted form. However its extreme simp!icity
is likely to make its implementation easy and its measured run times may
well be competitive with the more complex algorithm presented in Section 6.
We start by considering point problems and discuss graph problems (which
are only slightly more complicated to implement) at the end of this Section.

We make the reasonable assumption that the partitioning is to be carried
out on the same parallel machine on which the problem is to be solved.
Thus 2- and 3-d problems are computed on 2- and 3-d meshes, respectively.
Alternatively, since a large enough hypercube can havie any lower dimensional
mesh embedded in it, we may choose to run our problems on hypercubes.

Discussion of a parallel implementation is complicated by the issue of
mapping. Whereas in the serial algorithm we were only concerned with
the partitioning, in the parallel algorithm we would like to partition our
domain and at the same time deliver the resulting subdomains to the correct
processors. This can result in substat-til savings in time, as discussed below.

The question that now arises is how we are to map the 2d subdomains
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that arise after a depth d partitioning onto a p - 2d processor system.
The mapping that we choose is the natural mapping described by Berger
& Bokhari[3, 4]. When the first bisection is made, dividing the domain into,
say, a left half and a right half, then the left subdomain is associated with
the left half of the mesh and the right subdomain with the right half. This
process is repeated until the subdomains at the dth level are reached-these
are associated with individual processors.

5.1 Basic bisection step
We shall now suppose that we have a p = 2d processor chain-connected
parallel machine. We shall describe how the basic bisection step is carried
out on this chain and then later show how this chain is mapped onto the
target parallel machine 3 .

For purposes of illustration, we shall assume that we have a 2-d point
problem with n points and that the point data (comprising <x,y> coor-
dinates) has been duplicated and two sorted lists prepared, one for each
coordinate. These lists are loaded into our chain in a linear order, with 2n/p
points per processor.

Sweep-x Sweep through each point of the x-list sequentially from left to
right, in order to identify the optimal split point, as in Section 4. The
x-coordinate of the split point is called SPLITVALUE.

Migrate-x Move all points of the x-list with x-coordinate < SPLITVALUE

to the left half of the processor chain and the remaining points move
to the right half.

Mark-y Now sweep through the y-list, marking with the label LEFT, those
points whose x-coordinates are <_ SPLITVALUE and all others with
RIGHT.

Migrate-y Move all points of the y-list marked LEFT to the left half of the
processor chain and those marked RIGHT to the right half.

"3Which could be a 2d/2 x 2 d/2 2-d mesh, a 2d/3 x 2d/3 x 2d/3 3-d mesh, or a dimension
d hypercube.
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Each of the above four steps takes time proportional to n. The basic
bisection step can now be repeated on the two halves of the chain, with the
roles of x and y interchanged. If at each Hisection step the number of points
is exactly halved, the time required is proportional to no more than

n n +n +n+ <2n

Parametric binary dissection does not guarantee that each dissection step
will exactly halve the number of points. We shall assume that the maximum
number of points at every step of the partitioning is a constant times the
ideal balance at that step. Thus the O(n) result obtained above holds for
plain as well as parametric binary dissection.

5.2 Bisectionable Chain Embedding

The bisection procedure described above only serves to partition the domain
over a chain of processors. When carrying out computations on 2-d or 3-d
domains we would naturally prefer to use 2- or 3-d meshes for our compu-
tation. We now describe embeddings of chains in 2- or 3-d meshes which
have the interesting property that when the basic bisection step of Section
5.1 is successively applied to such chains, then the points migrate to the pro-
cessors on which they should be mapped according to the natural mapping.
No explicit routing of data blocks is required. This property eliminates an
expensive routing step.

Figure 3 shows how a Bisectionable Chain Embedding (BCE) is con-
structed by combining two smaller BCEs. To formalize the rules for gener-
ating BCEs, note first that their sizes can be either 2' x 2' or 2' x 2'+', for
sornp integer i> 1. The line segments making up BCES are parallel to either
the x or the y axis. For a 'non-square' BCE (that is, one of size 2' x 2'+'),
the longer side is parallel to the y axis. The rules for generating BCEs are
as follows.

I. A BCE of size 2 x 2 is a square with corners at (1, 1), (-1, 1), (1, -1)
and (-1,-1).

2. To construct a BCE of size 2' x 2i+1, translate a BCE of size 2i x 2' so
that its lower right corner lies at (1, 1). Reflect about the x axis. Delete
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2x2 2x4

4x4 4x8 8x8

Figure 3: A Bisectionable Chain Embedding (BCE) of size 2 x 4 is constructed
by juxtaposing two 2 x 2 BCEs and putting a 'bridge' between them. The figure
shows how 4 x 4, 4 x 8 and 8 x 8 BCEs are constructed using this procedure.

the segments (1,1) ' (-1, 1) and (1,-1) • (-1,-1). Add segments
(1, 1) +-+ (1,-1) and (-1, 1) +- (-1,-1).

3. To construct a BCE of size 21+' x 24+1, translate a BCE of size 2' x 2'+1
so that it is symmetric about the x axis and its rightmost edge lies
on the line x = -1. Reflect about the y axis. Delete the segments
(1,1) +-+ (1,-i) and (-1,1) 1,(-1,-i). Add segments (1,1) +-+ (-1,1)
and (1, -i1) +-- (--1, -- 1).

Figure 4 shows a bisectionable chain embedding of size 16 x 16. Our
sorted x and y-lists are mapped onto this chain starting at e and ending at
U. If the basic bisection step is applied to these lists then we will obtain two

13



Figure 4: A bisectionable chain embedding (BCE) of size 16 x 16. The sorted x
and y lists are mapped onto this chain starting at e and ending at k If the basic
bisection step (vertical cut) is applied to these lists then we will obtain two sets of
sublists, one set starting at o and ending at 0; the other starting at o and ending
at a This procedure can now be repeated with two horizontal cuts.

sets of sublists, one set starting at o and ending at 0; the other starting at
o and ending at a

The key property of BCEs is that at this stage the left half of the mesh
chain will contain only the points of the original lists that should be mapped
onto the left half of the mesh and similarly for the right half of the chain.
Thus when the bisection procedure is carried out recursively on a BCE, the
data points move to their respective parts of the mesh, so that at the end of
the procedure each processor contains its naturally mapped points.

The concept of Bisectionable Chain Embeddings is easily extended to
higher dimensions. Figure 5 shows a BCE for a 4 x 4 x 4 3-d mesh.

14



z

I' X

Figure 5: A 3-d BCE of size 4 x 4 x 4. x, y and z lists are mapped onto this chain
starting at * and ending at N. The first bisection (with a plane perpendicular
to the x axis) will split the BCE at the dashed segment. This procedure is then
repeated recursively for the y and z directions. For clarity the spacing along the
z axis has been distorted.

5.3 Graph Problems

We present our analysis for the case of degree constrained graphs embedded
in 3-space, and assume that 3 copies of the graph are available to us, sorted
by each of the dimensions 4. Each item in the x-list, for example, contains the
<x, y, z> coordinates of the point and the coordinates of all points adjacent
to this point. These lists are mapped onto a chain of processors as before

4Applications to higher or lower dimensions are immediate, although it is to be kept in
mind that the space required by this algorithm (on each processor) is proportional to the
number of dimensions of the problem. It should be recalled that the ultimate objective
of the partitioning is to permit a complex aerodynamic computation to take place. The
partitioning is carried out before the computation. The actual computation requires a large
number of variables for each poiLt to store, for example, the velocity vectors, pressure,
density etc. Typically from 50 to 100 locations are required for each point [7I. This space
can thus freely be used for the binary dissection.
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and the chain of processors embedded in a 3-d mesh.
The basic bisection step for graph problems requires visiting each pro-

cessor sequentially, and within each processor, traversing the z-list. As each
point is visited, we count the number of edges that would be cut if this point
were the extreme point in the bisection. This process is repeated in the re-
verse direction and then the point where the minimum of nodes + A x (edges
cut) occurs found along the lines of the serial procedure of Section 4. This
is followed by list migration. This step is then repeated successively in the y
and z directions.

Of course, at each point we must visit the nodes adjacent to that point,
and list migration involves moving not only each point, but also its adjacent
points. Our time complexity is unchanged at 0(n) because we have assumed
a constant degree constraint.

6 Fast Parallel Algorithm

The ideal algorithm for parametric dissection of an n node problem on a p
processor system would have complexity 0(n/p log n/p), which is the same as
if each processor were solving the subproblem resident on it in isolation. This
lower bound is difficult to achieve because of the overhead of interprocessor
communication (which depends heavily on the interconnection structure of
the parallel processor). The fast algorithm that we present in this Section
comes close to this bound, at least on hypercubes. We present our algorithm
for a graph problem; application to the simpler point problem is straightfor-
ward.

6.1 Notation

We shall assume that the problem graph is made up of n nodes, with a fixed
degree constraint. The problem graph is supplied to us in sorted form, one
copy per dimension. The graph is initially partitioned into p blocks in a
chain-like fashion; the chain is in turn embedded on our parallel processor
according to the Binary Chain Embedding discussed earlier. The parallel
processor may be interconnected as a 2- or 3-d mesh or as a hypercubes. To

"SIn the cam of hypercubes, the 2- or 3-d BCE is embedded in a mesh which is, in turn,
embedded in the hypercube using the Gray code embedding technique[16].
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permit a unified analysis of our parallel algorithm, the times taken by certain
required communication operations on the parallel processor are given by the
symbols enumerated in Table 1. At the end of this Section we compare the
performance of this algorithm on the three types of processor interconnects
by substituting actual known expressions for these symbols.

Table 1: Times required on a k-processor system.

Symbol I Operation
S(k) sum-prefix
C(k) condense subchains
M(k) find minimum
P(k) arbitrary permutation

6.2 The Algorithm

For our exposition, we assume that an n node graph embedded in 2-d is
given to us. Two copies of this graph, sorted by the x and y directions, are
mapped onto a chain of p processors. The fast parallel parametric bisection
algorithm has the following four steps.

1. Find heftvec and rightvec

2. Find optimal split point

3. Migrate the graph

4. Repeat recursively along next direction

6.2.1 Finding heftvec and rightvec in parallel

In order to find the optimal split point, we must compute heftvec and rightvec
as was done in Section 4. Parallel computation of these vectors is complicated
by the fact that the n node graph is distributed over p processors. The ideal
lower bound of O(n/p) is difficult to achieve because of the overhead of
interprocessor communications.

17



I !

leftvec 1  I P I P3  P4
14
13
12
11
10
9
8

3
2
1
0

Figure 6: Parallel computation of leftvec. The domain to be bisected is given at
the top and is partitioned across 4 processors. The upper plot (points marked .)
shows the desired leftvec. The lower plots (points marked o) show local estimates
of leftvec by each processor. Estimates on P2, P3, & P4 are in error by 6, 7 &
6 units, respectively, because these processors do not know about edges that (1)
straddle them or (2) leave the region from processors to their left.
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Figure 6 shows a graph embedded in 2-d that has been partitioned across
four processors, with n/p points per processor. The plot with points labeled
* shows the desired Ieftvec. Each individual processor cannot compute this
vector because it lacks crucial information about edges that are incident on
nodes assigned to other processors that influence the vector positions that
lie on itself.

Each processor can compute a local estimate of its portion of Ieftvec in
O(n/p) time. This is done by sweepinge through the points in x order, adding
up in localileftveclil the edges that would leave the region if the bisection point
was chosen to be just beyond node i. This process takes O(n/p) time, since
each processor has only to compute its n/p elements of Iocal-leftvec.

In the example of Figure 6, the local-leftvecs on processors P2, P3 & P4
are in error. On P2 for example, the estimate is consistently 6 units below
the desired value. This is because P2 is not aware of the 3 edges that straddle
it, and the three edges that leave the region from nodes within processor P1 .
It is thus clear that a communication step is required to inform all processors
of (1) all straddling edges and (2) all edges that leave the region from other
processors.

For every processor Pk, k > 1, define Lk to be the number of edges that
are cut by the separation of the chain between processors Pk and Pk-1. It
is important to remember that the processor ordering is with respect to the
embedded chain. Given Lk, Pk can compute leftvec[i] = Iocalleftvec[iJ + Lk
for all the points i resident on Pk. The problem then is to determine the set
of values Lk, in parallel.

Each processor Pk can count the total number of edges that have an
endpoint in Pk and an endpoint in any processor to the left of Pk (i.e., in
some Pi, j < k). Denote this total by Ik. Similarly, each Pk can count the
total number of edges that have an endpoint in Pk and an endpoint in any
processor to the right of Pk; call this Ok. Now observe that the number of
edges that span Pk is Lk - Ik: the number that enter Pk from the left, less
the edges that terminate in Pk. The number of edges that are cut by the Ph
to Pk+l split (i.e., Lk+1) is equal to the number of edges that span Pk, plus
the number of edges that originate in Pk: (Lh - Ik) + Ok. This gives us the

6This sweep is slightly more complicated than the sweep for the serial algorithm, since
edges can be encountered at node j that increase the values of Iocalieftvec[i1 for all i < j.
However, it can still be accomplished in O(n/p) time.
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recursion

Lk+1 = Lk--Ik+Ok

- LL + Dk where Dk = -Ik + Ok
k

- F'i

i=1

From this we see that the problem of computing the values of LL is solved
simply by a parallel sum-prefix on the values Dk, which we assume to take
time S(k). The total time required in finding Ieftvec and rightvec is thus
o(n/p) + S(k).

6.2.2 The optimal split point

Once the global information has been compensated for, each processor has
a portion (of size n/p) of leftvec resident on it. It now remains to find
the optimal split point. Each processor can find its local minimum in time
O(n/p) and all processors can decide on the global minimum in time M(p).

6.2.3 Migrating the graph

The next step is the migration of the x and y copies of the graphs to the
appropriate halves of the parallel processor. As far as the x copy is concerned,
the split point is already known. This is illustrated in Figure 7. In this Figure
a graph of 16 nodes is distributed uniformly over 4 processors. The bisection
point in this example happens to assign 10 nodes to the left half of the domain
and 6 nodes to the right half. After migration, therefore, there must be 5
nodes each on processors P1 & P2 and 3 nodes each on P3 & P4. Solid vertical
lines indicate the original partition while dashed lines indicate the partition
after migration. The migration of the x graph requires the movement of no
more than n/p points from a processor to its neighboring processors. The
migration of the x graph thus takes time O(n/p).

The migration of the y copy of the graph is far more complex and is
illustrated in Figure 8. This Figure shows the y copy of the graph of Figure
7. This y copy is also partitioned uniformly over four processors, as indicated
by the solid vertical lines. Note that the x and y axes are interchanged in

7This is because the vertical strips of the domain are mapped onto a chain of processors.
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Bisection Point

Figure 7: A 16 node graph, sorted by the x direction, uniformly partitioned over
four processors (thick solid lines). The bisection assigns 10 (6) nodes to the left
(right) half of the domain. Nodes must be migrated so as to place 5 nodes each
on P1 - P2 and 3 nodes each on P3 - P4 (dashed lines).

_F3 4
zI

Bisection Point --

Figure 8: The graph of Figure 7 sorted by the yi direction is also uniformly
partitioned over the four processors. When a bisection is carried out in the z
direction, as shown in Figure 7, this y graph must also be repartitioned. In this
case all nodes with x coordinates less (greater) than the bisection point must be
uniformly distributed across P1 - P2 (f' 3 - P4). Dashed boxes show the assignment
of nodes after migration.
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this case. Our objective in carrying out the migration is to ensure that the
two halves of the processor chain, i.e. P1 - P2 & P3 - P4, contain the same
subsets of nodes of the graph. Thus, since the nodes in Figure 7 to the right
of the bisection point are moved to processors P3 - P4 , we must similarly
move the nodes above the bisection point in Figure 8 to P3 - P4. The nodes
on the other side of the bisection point must conversely be sent to P1 - P2.
The dashed boxes in Figure 8 show the ultimate destinations of the nodes of
the y graph.

The interprocessor communication requirements of the y migration step
are particularly severe. For example in Figure 8 we can see that P2 and
P3 both need to send information to P1. Similarly, P3 and P4 need to send
information to P2 . It can also arise (although this is not illustrated in Figure
8) that one processor is required to send information out to several other
processors. It is possible to satisfy this communication requirement using
the complete exchange pattern, however it is possible to do much better, as
the following discussion indicates.

Recall that our graph has been partitioned across a chain connected ar-
ray of processors and the chain in turn embedded in a 2 or 3-d mesh or a
hypercube using the BCE discussed earlier. Referring to Figure 8 we see that
when several processors need to transmit to one processor, the transmitting
processors form a subchain. For example, P2, P3 , P4 form a subchain that
transmits to processor P4. Instead of each processor transmitting individu-
ally to the destination, we can arrange to condense all information from a
transmitting processor subchain into one processor, and then transmit from
that one processor to the destination. Conversely, when one processor needs
to receive from several processors, the receiving processors form a subchain
and we can arrange to transmit to one of these processors and then dissemi-
nate this information to the recipients. The advantage in doing so is that the
data movement between processors becomes a permutation and well-known
techniques can be utilized for this [13, 22]. We shall discuss in Section 6.3
the details of these operations on specific interconnection structures. For
the moment we shall assume that the time ruquired for condensation and
dissemination on a k processor system is C(k) and the time for permutation
is P(k).

The process of y-migration is then as follows.
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1. Condense all nodes of a subchain into one node,

2. transmit (permute) data between subchains, and

3. disseminate to nodes of receiving subchains.

In the worst case, each processor needs to send out or receive O(n/p)
points so that the time required for the y migration step is O(n/p)P(k).
The total time for the x and y migrations is thus O(n/p) + O(n/p)C(k) +
O(n/p)P(k).

6.2.4 Summary

Table 2 summarizes the parallel algorithm and the time taken by each phase
of the basic bisection step.

Table 2: Time taken by the basic bisection step.

I Compute vectors O(n/p) + S(k)
2 Find optimal split point O(n/p) + M(k)
3 Migrate nodes O(n/p) + O(n/p)C(k) + O(n/p)P(k)

6.3 Analysis of Run time

We now investigate the running time of the fast parallel algorithm on 2-
and 3-d meshes and on hypercubes. This is done by substituting known
expressions for the operations of Table 1 into the expressions of Table 2.

6.3.1 2-d meshes

Finding minimum and executing an arbitrary permutation on a 2-d mesh
takes time M(k) = P(k) = 0(k1 /2 )[13, 20]. The sum-prefix operation takes
time S(k) = log(k)P(k) = log(k)O(k'/ 2 ) as it requires log k different permu-
tations.

To determine the time required for a condensation operation, we note that
a BCE can only have aspect ratio 1 or 2. Thus a BCE with k nodes is mapped
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Figure 9: When a k node BCE is mapped onto a 2-d mesh, each subchain of the
BCE can be spanned by a tree with degree constraint 4 and diameter less than
the diameter of the mesh. Two subchains are indicated on the left of the diagram.
The corresponding trees are shown on the right hand side.

onto a mesh of size 2 ROg 2 kl x 2 [log 2 kj. This mesh has diameter 0(k'1 2). It
follows that the nodes of each subchain of a BCE can be connected by a
spanning tree of diameter 0(k'/ 2), as illustrated in Figure 9. Furthermore,
the degree of the nodes of this subtree is constrained to 4, since the mesh
has degree 4. Thus the condensation operation can be carried out in parallel
on all subchains in time C(k) = 0(k1 /2 ).

Recalling that O(n/p) data points are transmitted at each step, the time
for the basic bisection step (Table 2) is

O(p) + S(k) + M(k) + O(p)C(k) + O(p)P(k)

= log kO(k'/2 ) + o(k'/2 ) + O(n)O(k1/2) + O(r)o(k1/2)
p p

= log kO(k'/ 2) + O(n)O(k1/2)

This step is repeated for k = p,p/2,p/4,.... The time for the entire fast
parallel algoritilm for an n node problem on a p processor system is thus

t2-d mesh = O( n + p1/2 log p). (4)
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6.3.2 3-d meshes

The time required to compute minimum, M(k), and to execute an arbitrary
permutation, 'P(k), is 0(k1 /3) [13, 20]. Sum prefix takes S(k) = log kP(k) =
log kO(k1 /3 ). The condensation time C(k) - 0(kl/ 3 ), using an argument
similar to the one for 2-d meshes. The time for the basic bisection step is
thus

log kO(k'/ 3 ) + 0(n )0(k/3).

The total time, obtained by summing the times for k = p, p/2, p/4,..., is

t3-d mesh = 0(-- -- P 1 3 logp). (5)
p2/3

6.3.3 Hypercubes

On a hypercube, the time for computing minimum M,(k) = 0(log k). The
time for permuting data is P(k) = O(log k) using Waksman's method[22],
provided the required data routings are computed first. The O(k log k) over-
head of this precomputation is prohibitive for permutations that are not
known beforehand, as is the case for the node migration step (line 3 of Table
2).8 We therefore use the simpler sorting approach to permuting data, which
requires P(k) = 0(log2 k) time and has no setup overhead.

For the computation of leftvec and rightvec (line 1 of table 2), we need to
carry out a sum-prefix computation, which requires log k permutations, each
with a fixed communication pattern. Waksman's method can be used in this
case as the fixed data routings can be computed beforehand for a given size
of hypercube. The time required for this operation is thus S(k) = log2 k.

To investigate the condensation time C(k), we note that our domain has
been mapped onto a BCE, which has been embedded in a 2- or 3-d mesh,
which in turn has been embedded in a hypercube. Subchains of size k or
less are thus wholly contained in subcubes of size 0(k) and can be spanned

"SNassimi and Sahni's algorithm[14], which also takes O(log k) time on hypercubes and
requires no precomputation of routing, is restricted to a subset of all possible permutations.
At this time, it is not known whether the data movements required in parallel parametric
binary dissection fall into the category to which this technique can be applied.
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by trees of diameter O(log k) with degree constraint O(log k), leading to
O(log2 k) condensation time. The times from table 2 become

0(') + S(k) + M(k) + O(+)C(k) +

= O(log' k) + o(Q)O(log' k) + O(n)O(log2 k)
p p

= O(pn)o(log2 k).

The total time for hypercubes is thus

thypercube = O( ogsp). (6)

7 Applications to Unstructured Meshes

A portion of a 2-d unstructured mesh is shown in Figure 10. It can be seen
that this mesh has a very large variation in node density. The objective, in
generating the mesh, is to have a higher density of nodes in the regions where
there is greater need for accuracy. It is this variation in density that makes
such meshes difficult to partition. 3-dimensional unstructured meshes are an
obvious extension but are impossible to illustrate on a 2-d page.

We have implemented the Fast Parametric Dissection algorithm of Section
4, using equation (2) of Section 3. This algorithm has been used to partition
several very large 3-d unstructured grids taken from aerodynamic problems.
When applying parametric dissection on such grids, it is often the case that
the first cut is badly imbalanced as far as the number of nodes is concerned.
This is because binary dissection considers the graph to be embedded in
a rectangle or cuboid, with edges extending to the sides of the rectangle
or cuboid (as shown in Figure 10). The mesh really occupies a roughly
ellipsoidal region of 2 or 3-d space (which cannot be depicted in figure 10 as
it is very large compared to the wing cross-section shown). When A is non
zero, the first cut is likely to slice off a small tip of the ellipsoid, so as to
minimize the number of edges cut. Thus we have a tiny number of nodes
in one region and most of the nodes in the other region. The objective (2)
is correctly minimized and the partitioning obtained is superior to a plain
partitioning, but only for depth 1. Beyond depth 1 or 2 this poor initial cut
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Figure 10: A 2-d unstructured mesh.
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leads to bad partitions. This phenomenon is very similar to that described by
Stone in connection with the partitioning of random graphs[18]. Our solution
to this problem is to carry out the first 1, 2 or 3 cuts with A = 0 and switch
over to the desired value of A only after these initial cuts have balanced the
number of nodes in the initial 2, 4 or 8 subregions.

In order to evaluate the speedup that would be obtained if a parametric
binary dissection were used, compared to plain binary dissection, we carried
out an experiment with a 3-d mesh of size 106,064 nodes and 697,992 edges.
This mesh is derived from a problem involving a wing and pod (engine en-
closure) and half a fuselage. Measured run time on a 50 MHz MIPS R4000
processor for a depth 15 partition of this mesh is 83 seconds (excluding time
to input the mesh).-

The following evaluation procedure was repeated for depths = 4 - 15.

"* Run the parametric dissection algorithm for A = 0.0, 0.2,-.., 1.0.

"* For each run obtain maxnodes(A) and maxedges(A), the maximum
number of edges and nodes over all regions.

"* The normalized run time for a dissection is

tp,,ametric(A) = maxnodes(A) + A x maxedges(A).

This assumes ideal communications on the target parallel processor.

"* maxnodes(O) and maxedges(O) are the values that would have obtained
if plain binary dissection had been used, since for A = 0 parametric
dissection reduces to plain dissection. Thus for this problem the time
taken by a plain dissection is

tpl~m = maxnodes(O) + A x maxedges(O).

"* For a given value of A the performance advantage of the parametric
algorithm is

Improvement(A) = tpW

tpa2ametnc(A)'
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Figure 11: Improvement of parametric binary dissection over plain binary dissec-
tion, when applied to a 3-d aerodynamic mesh with s 0.1 million nodes and - 0.7
million edges, for depths 4-15 (corresponding to 16, 32,.- -,32768 processors). For
A = 0 parametric dissection reduces to plain dissection and there is no speedup.
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The results of the above experiment are summarized in the plots of Figure
11 which show the performance improvement of parametric dissection over
plain dissection. Since parametric dissection reduces to plain dissection for
A = 0, the curve corresponding to this A is constant at 1.00. There is no
improvement for depth=1,2 or 3 because plain dissection is used for these
depths, as discussed above, and these depths are not shown.

There is initially a small improvement at depth 4, after which perfor-
mance is actually slightly poorer than plain dissection. Beyond depth=10,
the advantage of using parametric dissection increases steeply with increas-
ing depth. In this example the parametric algorithm yields partitions that
are 20% better than plain dissection at depth 15.

8 Applications to Color Image Quantization

The algorithms described above have applications to partitioning problems
unrelated to parallel processing. One example is color image quantization,
in which samples in a high-resolution color space are mapped onto a lower
resolution space in a way that minimizes the color error [11]. More formally,
we are given a digital image whose pixels are chosen from a palette containing
2 ' colors, and we wish to generate an acceptable reproduction using a palette
of 2k colors, where k < m. Typical values for m run from 15-24, while k
is usually in the range from 8-12. Color quantization is commonly used to
convert full-color images into colormapped or pseudocolor images in which
each pixel is a k-bit index into a color lookup table, or colormap.

In full-color images, the m bits of color information are typically divided
into three distinct color components, each using P m/3 bits. If we assume a
red-green-blue (RGB) color model, then each component represents an axis
in a three-dimensional color grid. The component values at each pixel can
be thought of as indices into this grid. The problem then becomes one of
partitioning the grid such that (1) the total number of regions is bounded by
k, and (2) the maximum distance between any two points within a region is
minimized. The latter constraint is a measure of the color error between the
original image and the quantized result.

At the end of the partitioning process, the colors found in each region
will map to the same representative value in the colormapped result. A
variety of techniques have been proposed for partitioning the color space [10],
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[11], [191, [23], [24]. Our approach most closely resembles Heckbert's median
cut algorithm, but uses a modified version of Fast Dissection to speed up
bounding box computations and reduce the maximum color error. We can
also employ the parametric dissection idea to provide additional control over
the placement of cuts.

The first step is to scan the original image and record which points in
the color space are represented. We store this information in a 3-d Boolean
matrix. The matrix is then scanned to produce a list of the colors which
occur. The color list is replicated and sorted for each color component,
as required by the Fast Dissection algorithm. Since our color components
require only a few bits each, we can avoid the level of indirection required by
the PARAMETRIC-CUT algorithm of Section 4. Instead, each color component
can be stored directly as a bit field within a list item, reducing both memory
and computation costs.

We next need a strategy for partitioning the lists. In the context of this
problem, load (the number of colors in a region) is much less important than
shape (the maximum distance between the points, or color error). Therefore
our objective function is reformulated as color error + A x (no. of colors).
Increasing A improves the ability to distinguish between colors in densely
populated regions of the color space at the expense of poorer resolution in
sparsely populated areas. Since the quality of a quantized image is often
subjective, A may be varied until the most pleasing result is achieved.

Other objective functions are certainly possible. For example, the colors
in a partition could be weighted according to the number of times they occur
in the original image (Heckbert's popularity criterion). This leads to a more
accurate rendition of those colors which comprise large areas in the image,
and less accurate rendition of others. Adjusting the value of A determines
how much the partitioning is influenced by the popularity counts. Simply
setting A to zero may be perfectly acceptable for many images, since this will
tend to minimize the overall color error irrespective of other considerations.

For the sake of efficiency, we use a simple technique to estimate the color
error in a region. Rather than searching for the two most extreme points
and computing the distance between them, we use the length of the diagonal
of the bounding box containing the points. With Fast Dissection, finding
the bounding box is trivial-we simply obtain the respective maximum and
minimum color components from each of the three sorted lists. At each
partitioning step, these are accessible via the L and U list indices.
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In our earlier descriptions of Parametric Binary Dissection and Fast Dis-
section, we have assumed a recursive partitioning process which descends
until the maximum number of subregions is produced, or until a region can-
not be subdivided further. For color quantization, we follow Heckbert's lead
and modify this strategy to utilize adaptive partitioning. With adaptive par-
titioning, the directions of the cuts are not predetermined by the depth of
the recursion, but are chosen dynamically based on properties of the data.
A simple heuristic which works well for color quantization is to split the
region along the longest edge, i.e., in the direction of largest color error.
A more elaborate approach could use Fast Dissection to compute the split
points in each direction, and evaluate the objective function for the resulting
subregions. The cut would then be made in the most favorable direction.

One disadvantage of the recursive approach is that the partitioning pro-
cess can "bottom out" prematurely-one or more branches of the recursion
tree may encounter regions which cannot be further subdivided, even though
other branches may offer ample opportunity for subdivision. The net result
is that some of the available colormap entries go unused. Our solution to
this problem uses an iterative variant of Fast Dissection. After each cut is
made, the objective function is evaluated for the resulting subregions, and
they are placed on a global subregion list, sorted by descending magnitude
of the objective function. At each step of the iteration, the first subregion
on the list is partitioned. This procedure guarantees that every available
colormap entry will be used (assuming the original image contains at least
2 k colors), and it also drives the largest value of the objective function to a
minimum.

When the partitioning phase is complete, the color of each region is set
to the centroid of the bounding box, and all pixels whose original color lies
in that region are mapped to the new value.

9 Conclusions

We have presented a new approach to the partitioning problem for non-
uniform domains, analyzed its run time for serial and parallel machines and
presented some measured performance figures. The parametric dissection
algorithm is seen to provide better performance than the original binary
dissection algorithm for large depths of partitioning.
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A fast algorithm for parametric dissection was presented in Section 4.
This algorithm has run time 0(n log n) as opposed to the original 0(n log2 n)
dissection algorithm. The time for dissection is thus completely masked by
the time required to sort the input data.

We have presented two parallel algorithms for parametric dissection. The
0(n) algorithm is simple to implement and will likely be useful in situations
where the mesh is being input serially to the processor, as in this case the
dissection time is masked by the time to load. Our more elaborate algorithm
has time 0((n/p'/2 ) + p1/2 logp), 0((n/p 2/3 ) + p1/ 3 logp) and 0((n/p) log3 p)
for 2-d meshes, 3-d meshes and hypercubes, respectively. This algorithm
performs well for problems in which the number of nodes n is large compared
to the number of processors, a case that is of considerable practical interest.

Future work in this area shall develop along the following lines.

1. Improvements in the parallel algorithm. Communication overhead,
shows up prominently in the expressions for run time of our algorithm.
Whether this can be reduced significantly is an open question.

2. Implementations of the parallel versions of the dissection algorithms
for the iPSC-860, Touchstone Delta and Paragon.

3. Evaluation of the performance of PBD on a large set of unstructured
meshes.

4. Use of these dissections for actual computation, especially for aerody-
namic problems.

5. Applications of PBD to other areas, such as circuit and VLSI parti-
tioning.
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